Electrospun TiO2 nanofibers for gas sensing applications
نویسندگان
چکیده
Nanostructured TiO2 has attracted much attention for a variety of applications including photocatalysts, electrodes for water photolysis, dye-sensitized solar cells, and gas sensors. In this work we report on TiO2 fiber mats for use in gas sensors demonstrating exceptionally high sensitivity to NO2, a toxic gas responsible for acid rain and other air pollution effects, and high sensitivity to H2, a potentially explosive gas.
منابع مشابه
TiO2 Fibers Supported β-FeOOH Nanostructures as Efficient Visible Light Photocatalyst and Room Temperature Sensor
Hierarchical heterostructures of beta-iron oxyhydroxide (β-FeOOH) nanostructures on electrospun TiO2 nanofibers were synthesized by a facile hydrothermal method. This synthesis method proves to be versatile to tailoring of β-FeOOH structural design that cuts across zero-dimensional particles (TF-P), one-dimensional needles (TF-N) to two-dimensional flakes (TF-F). In addition, synthesizing such ...
متن کاملGas Sensors Based on Electrospun Nanofibers
Nanofibers fabricated via electrospinning have specific surface approximately one to two orders of the magnitude larger than flat films, making them excellent candidates for potential applications in sensors. This review is an attempt to give an overview on gas sensors using electrospun nanofibers comprising polyelectrolytes, conducting polymer composites, and semiconductors based on various se...
متن کاملPreparation, Characterization and Sensitive Gas Sensing of Conductive Core-sheath TiO2-PEDOT Nanocables
Conductive core-sheath TiO(2)-PEDOT nanocables were prepared using electrospun TiO(2) nanofibers as template, followed by vapor phase polymerization of EDOT. Various techniques were employed to characterize the sample. The results reveal that the TiO(2) core has an average diameter of ∼78 nm while the PEDOT sheath has a uniform thickness of ∼6 nm. The as-prepared TiO(2)-PEDOT nanocables display...
متن کاملThe Potentials and Applications of Cellulose Acetate in biosensor technology
The interest in cellulose and its derivatives has been exponentially increasing due to its excellent thermal stability, biocompatibility, chemical persistence and biodegradability. Among various cellulose derivatives, cellulose acetate (CA) has been applied in many applications including sensor systems, drug delivery systems, separation membrane, and tissue engineering. Recently, the electrospu...
متن کاملThe Advances of Electrospun Nanofibers in Membrane Technology
Electrospinning is a simple and versatile technique that relies on the electrostatic repulsion between surface charges to continuously draw nanofibers from a viscoelastic fluid. Electrospinning can generate nanofibers with a number of secondary structures. Surface and/or interior of nanofibers can be functionalized with molecular species or nanoparticles during or after an electrospinning proce...
متن کامل